

HEAT AND POWER FOR BIRMINGHAM

INNOVATIVE DG CONNECTIONS LCNI 2014 Tuesday 21st October

Jonathan Berry Innovation & Low Carbon Networks Engineer

Agenda

- Project Introduction
- Fault Level Modelling
- Fault Level Monitor Installations

• Fault Level Mitigation Technology Installations

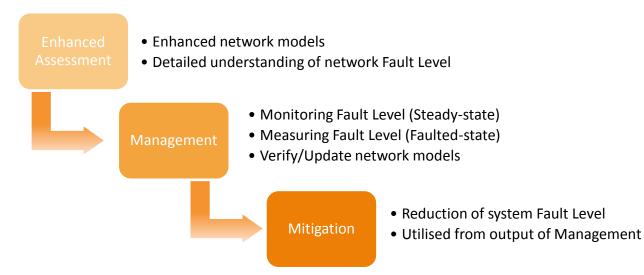
FlexDGrid – What and Why

What are we doing?

Understanding, Managing and Reducing the Fault Level on an electricity network

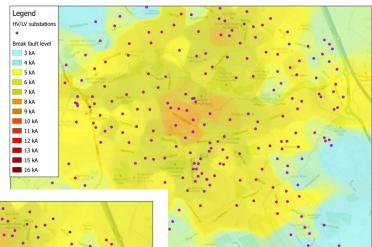
Why are we doing it?

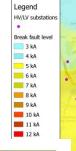
Facilitating the early and cost effective integration of Low Carbon generation

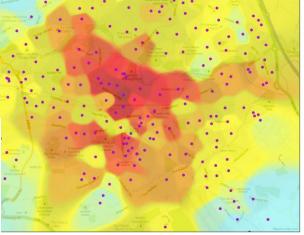

Why are we doing it now?

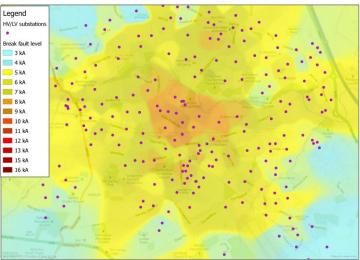
Supporting the Carbon Plan – Connection of generation to the grid and development of heat networks – reducing carbon emissions

What is FlexDGrid?

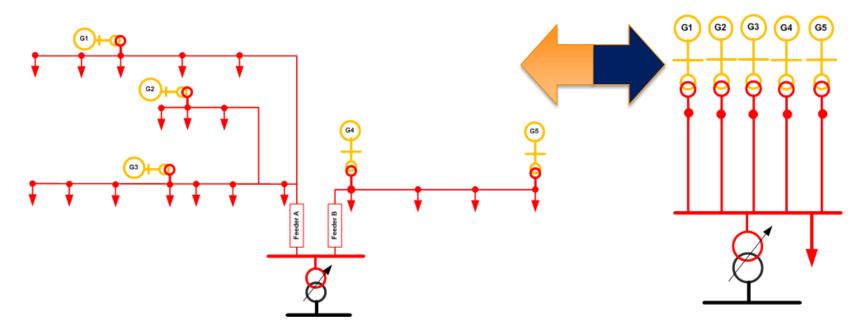

Three integrated Methods leading to quicker and cost effective customer connections through a timely step change in the enhanced understanding, management and mitigation of distribution network Fault Level.



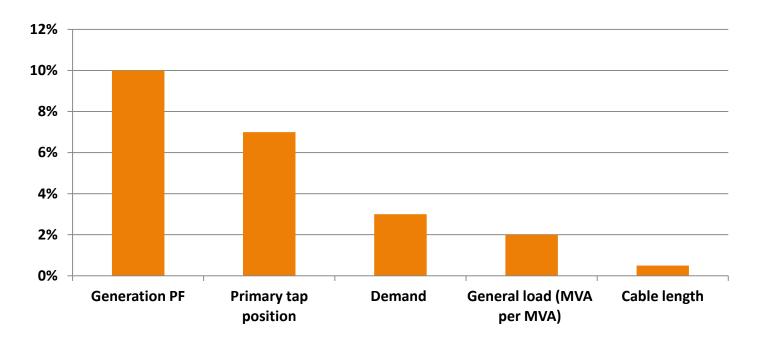

Each Method can be applied on its own whilst the integration of the three Methods combined will provide a system level solution to facilitate the connection of additional Generation.



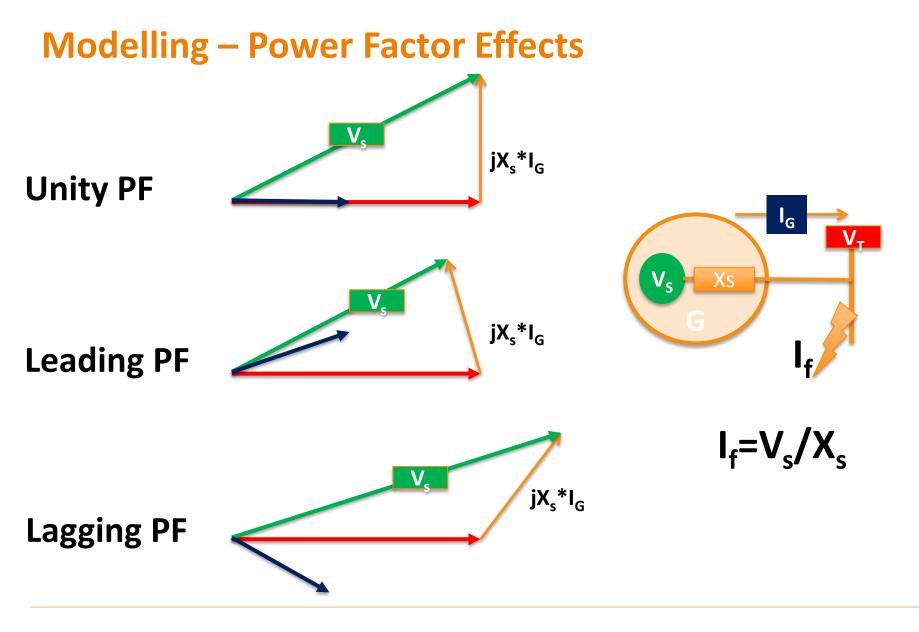
Effect on Fault Level



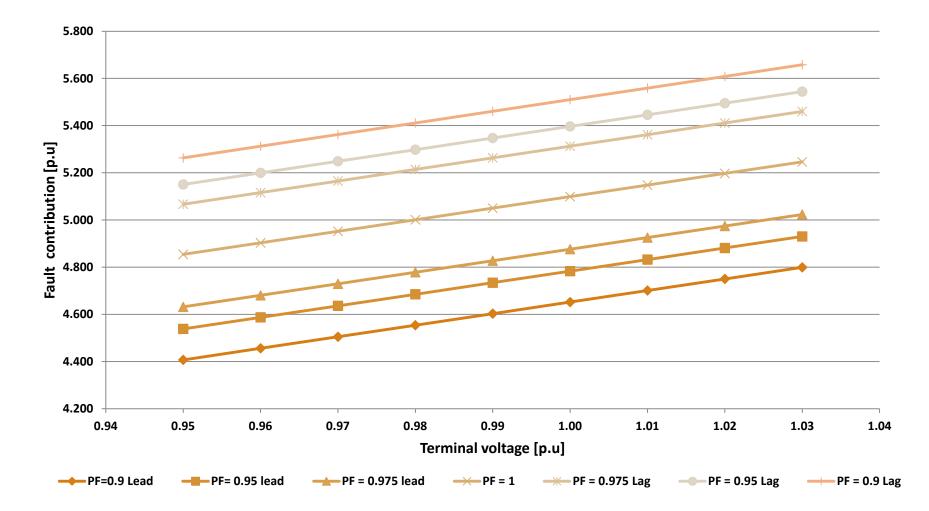
Fault Level Heat Maps


Modelling – Increased Granularity

	Unity PF		0.95 leading PF		Unity PF		0.95 leading PF		Gout=0	
	Make	Break	Make	Break	Make	Break	Make	Break	Make	Break
[kA]	6.76	2.50	6.26	2.23	7.13	2.60	6.71	2.43	7.05	2.57
[MVA]	128.8	47.6	119.3	42.5	135.8	49.5	127.8	46.3	134.3	49.0
	Difference (%)			5.5	4.0	7.2	9.0	-	-	

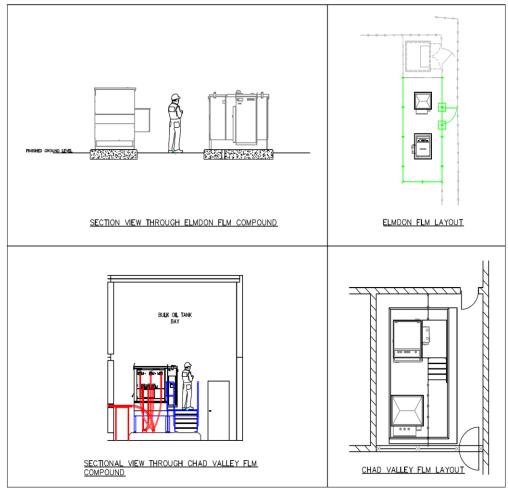


Modelling – Sensitivity Analysis


	Variation range		
Cable length	-5%	5%	
Demand	-10%	10%	
Generation PF	Unity, 0.95 leading, 0.95 lagging, Vset=1		
General load (MVA per MVA)	0	2	
Primary tap position (voltage at HV busbars)	0.95 pu to 1.03 p.u		

Modelling – Generation Fault Level

Modelling – Fault Level Mitigation Tech Model


	Fault Current Limiter m Substation Test	odel				
Source 1 Source 2	Substation Name	Substation Test				
— —	Firm capacity	78 MVA	Generation fault contribution [MVA/MVA]	4.5	-	
	Switchgears rating (Break)	13.1 kA	Base power	100	MVA	
	Switchgears rating (Make)	33.4 kA	Base voltage	11	kV	
	De-rating factor	10 %	Base current	5.25	kA	
	Switchgear policy rating (Break)	11.8 kA	Base impedance	1.21	ohm	
\bigcirc	Source 1 - Upstream Fault Contri	Source 1 - Upstream Fault Contribution Source 2 - Upstream Fault C				
	Upstream breaking fault contribution	7 kA	Upstream breaking fault contribution	8	kA	
<mark>ر</mark> ب	Upstream making fault contribution	19 kA	Upstream making fault contribution	20 kA		
<mark>ନ୍ତୁ କୁ</mark>	Upstream X/R ratio	20 -	Upstream X/R ratio	10	-	
	Voltage at Source	1 p.u	Voltage at Source	1 p.u		
Bus 1 🚽 👘 Bus 2						
	Source 3 - Downstream Fault Contribution Source 4 - Downstream Fault Contribution					
FCL	Breaking fault contribution	2 kA	Breaking fault contribution	1 kA		
	Making fault contribution	3 kA	Making fault contribution	2	kA	
Source 3 Source 4			_			
	Pre-Fault FCL loading	50 A				
Fault current limiter technology						
Pre-Saturated Core FCL (PCFCL)	Without FCL	Bus 1 Bus 2	With FCL	Bus 1	Bus 2	
	Breaking fault current [kA]	18.0 18.0	Breaking fault current [kA]	10.0	10.0	
Resistive Superconducting FCL (RSFCL)	Making fault current [kA]	44.0 44.0	Making fault current [kA]	24.0	24.0	
© Solid-State ECL (SSECL)	Generation headroom at Bus 1 (G1) [MVA]	0.0 -	Generation headroom at Bus 1 (G1) [MVA]	7.6	-	

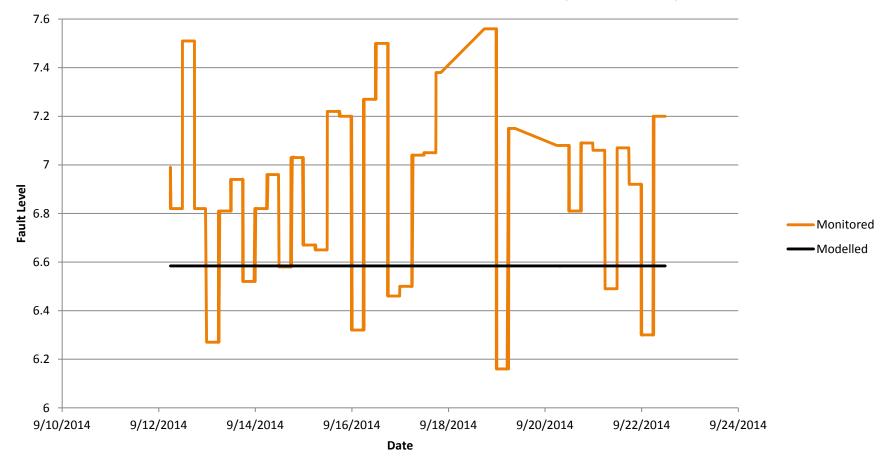
Excel Based FLMT Model

LCNI 2014 Conference - Innovative DG Connections

Fault Level Monitor Installations

FLM Site Designs

Fault Level Monitor Installations

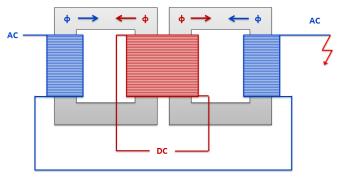


Ladywood FLM Installation

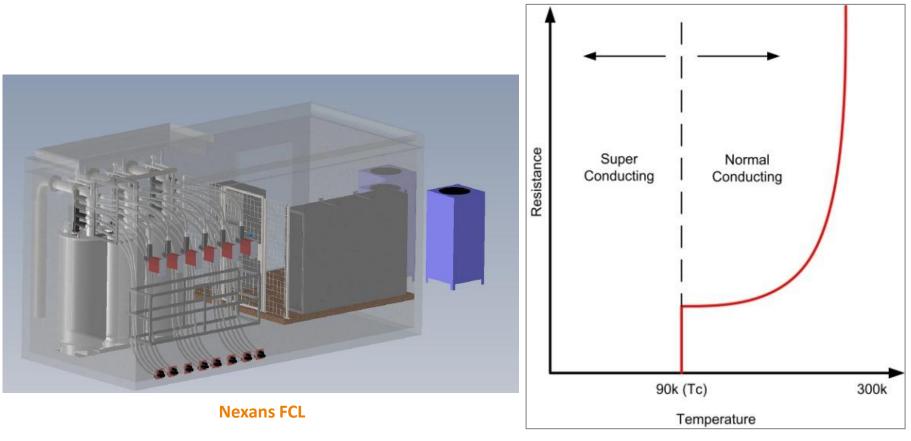
Fault Level Results from Installation

Modelled Vs. Monitored Fault Level (10ms RMS)

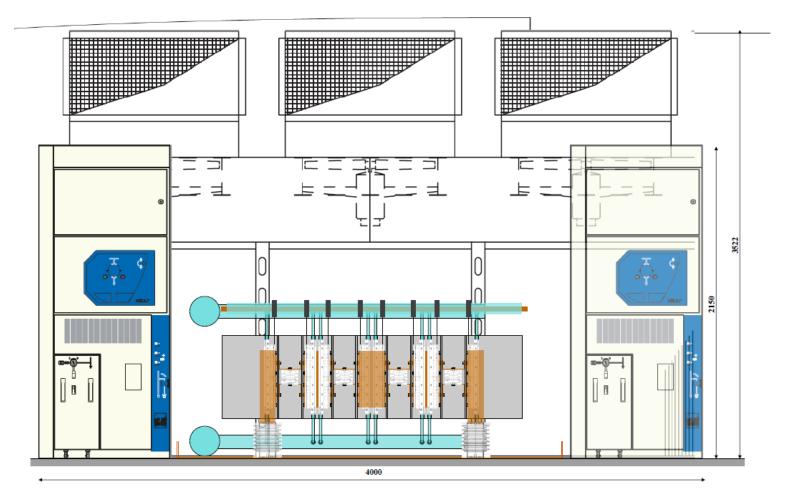
Fault Level Mitigation Technology Installations


Substation	Technology	Manufacturer	Delivery Date
Castle Bromwich	Pre-Saturated Core FCL	GridON	Q4 2014
Chester Street	Resistive Superconducting FCL	Nexans	Q2 2015
Bournville	Resistive Superconducting FCL	Nexans	Q3 2015
Kitts Green	Power Electronic FCL	Alstom	Q4 2015
Sparkbrook	Power Electronic FCL	Alstom	Q1 2016

Pre-saturated Core FCL



Design


Resistive Superconducting FCL

Power Electronic FCL

Alstom Design

FCL Benefits

FlexDGrid Requirements

Following the installation of an FCL be able to:

- Operate the 11kV network in parallel
- Increase the level of generation on the network by 10% of a substation's firm load capacity

Faster Connections

- Installation of an FCL can be carried out quicker than traditional reinforcement

Reduced Costs

 Installation of an FCL can be completed cheaper than traditional reinforcement

Greater Benefits

- Increased fault level reduction over traditional solutions
- Security of supply improvement through parallel network operation

Policies

Now in Place:

- EE201 FLM Engineering
 Specification
- EE202 FCL Engineering
 Specification
- ST_SD4R Application and Connection of 11kV FLMs
- ST_SD4S Application and Connection of 11kV FCLs

	WESTERN POWER
	DISTRIBUTION Serving the Midlands, South West and Wales
	Company Directive
ENG	GINEERING SPECIFICATION
	EE SPEC: 202
Fault Current I	Limiter (FCL) Devices for use on the 11kV Network (FlexDGrid)
	Policy Summary Western Power Distribution's engineering specifications for fault at Similer (FCL) devices on the 11kV network.
Author:	J Berry Innovation and Low Carbon Networks Engineer
Implementation Date:	July 2014
Approved by	
	Policy Manager
Date:	
TT 000 1 1 0014	-1 of42 -
EE.202 July 2014	-1 0:42 -

THANKS FOR LISTENING

Serving the Midlands, South West and Wales

Jonathan Berry Western Power Distribution Innovation and Low Carbon Networks Engineer 01216 239459 / 07894 258671 jberry@westernpower.co.uk

wpdinnovation@westernpower.co.uk

www.westernpowerinnovation.co.uk